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On Relationships Between Diffusion and Friction Coefficients 

INTRODUCTION 

An important equation in the analysis of translational diffusion in polymer solutions is the re- 
lationship between diffusion and friction  coefficient^.'-^ This relationship provides a conve- 
nient means of connecting theory and experiment for polymer-solvent systems. Application of 
statistical mechanics has led to theoretical expressions for the friction coefficient in infinitely di- 
lute5 and dilute6s7 polymer solutions, whereas utilization of free-volume concepts has yielded cor- 
responding  result^^*^^^ for concentrated solutions. On the other hand, in a diffusion experiment, 
it is the diffusion coefficient which is the experimentally measurable quantity. The purpose of 
this paper is to examine three forms of this equation which have been frequently utilized and to 
deduce which of these relationships appears to be the most appropriate for the analysis of dif- 
fusional transport in both dilute and concentrated polymer solutions. In addition, we derive F. 

modified form of the series expansion which describes the concentration dependence of the mu- 
tual diffusion coefficient for the important case of dilute polymer-solvent mixtures. 

THEORETICAL DEVELOPMENT 

We consider isothermal diffusion in polymer-solvent systems under conditions where the ef- 
fect of pressure gradients on the diffusion process can be neglected. For convenience, and with 
no loss of generality, the mass transport is assumed to he one dimensional. In the quasi-station- 
ary regime of diffusional transport, the chemical potential gradients and frictional forces are re- 
lated in the following mannerlo: 

C % 1 2 ( U l  - u2) (1) a:l - - -- 
ax 

Since 

i t  can be easily shown that 

j : = - -  ~ 1 M 2  (%) apl 
~ 2 ” ? d ~ 2  a m  T.P ax 

If diffusion coefficients are defined by the expression 

j; = _PDAAVWA = -~ DARVPA 
WB VSPS 

it is evident from eqs. (5), (6), and (7) that 

Furthermore, we have the following result: 

(7) 
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Equations (8) and (9) are equivalent to the diffusivity-frictional coefficient relationship utilized 
by Bearman,lo and the diffusion coefficient D is what is commonly called the binary mutual dif- 
fusion coefficient.” 

On the other hand, if we define diffusion coefficients using the equation 

it is obvious that 

In addition, in general, we have 

D 1 2  # D21. (14) 

This particular form of the relationship between diffusion and friction coefficients has been uti- 
lized by Onsager and FuossI2 and by Mandelkern and F10ry.l~ Clearly, either of the above re- 
sults is acceptable since there is, of course, no unique definition of a diffusion coefficient. The 
differences between the above two formulations are clearly not major, and, indeed, some of these 
differences disappear in the limit of infinite dilution. For example, as the concentration of the 
polymer (component 2) approaches zero, we have 

Lim = Lim Dzl. 
P2-0 P 2 - 0  

However, utilization of diffusion coefficients defined by eq. (7) does have discernible advantages 
over application of those defined by eq. (ll),  particularly when the analysis is not restricted to a 
narrow concentration range. Furthermore, these advantages can be achieved with no accompa- 
nying complications. In the first place, the first formulation introduced above leads to a sym- 
metrical representation of the diffusion process, and this is desirable since it leads to the intro- 
duction of the binary mutual diffusion coefficient. Furthermore, the usual form of the diffusion 
equation is obtained for a wider variety of diffusion phenomena when eq. (7) rather than eq. (11) 
is used in conjunction with the species continuity equation. 

For example, it is well known that accurate analyses of diffusion phenomena in binary liquid 
mixtures over wide concentration ranges can be carried out by assuming that the partial specific 
volumes of the components are constant. For one-dimensional diffusion, the volume average ve- 
locity then obeys the following equation: 

av + 
-= 0. 
ax 

Hence, if the diffusion process is taking place in a closed vessel where the velocity is zero on one 
of the boundaries, it follows that, everywhere in the diffusion field, 

U +  = 0. (17) 

Thus, the species continuity equation reduces to 

if eq. (7) is used, and to 

ax 
!!?=a 
at ax 

if eq. (11) is applied. The difference between eqs. (18) and (19) is clearly minor, and the applica- 
tion of these equations in the analysis of diffusive transport is effectively equivalent. Neverthe- 
less, there is some merit in utilizing eq. (18), which is the classical form of the diffusion equation, 
whenever possible since this is the form of the species continuity equation which many investiga- 
tors use to analyze diffusion experiments, often without bothering to check the validity of this 
approach. Hence, since it is eq. (18) which serves as the basis for analyzing diffusion phenomena 
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in liquid systems, we conclude that it is preferable to relate {IZ to D [using eq. (8) or (9)] rather 
than to D12 and [using eqs. (12) and (13)]. 

A more familiar form of eq. (9) can be derived by noting that eq. (2) can be written as 

where 

/l2 = C k ? .  (21) 

Equation (20) better illustrates the role of the friction coefficient /1z, which relates the force on a 
molecule of polymer, -@ax, to the velocity difference of the two components in the mixture. 
Thus, eq. (9) can be rewritten as 

A third relationship has been utilized by Yamakawa14 and Tanford,I5 who appear to define 
diffusion and friction coefficients using the following equations: 

This formulation leads to the following form of the species continuity equation 

and also gives 

However, the exact meaning of D*21 and /*, when viewed in a general sense, is ambiguous be- 
cause these material properties are introduced through improper constitutive equations. Equa- 
tion (23), which is presumably a constitutive equation for the diffusion flux, contains uz, the ve- 
locity of component 2 with respect to a convenient reference frame. Similarly, the constitutive 
equation utilized for the frictional force term of eq. (24) also includes UZ. Since these constitu- 
tive equations contain a quantity which is not frame indifferent, the coefficients in these rela- 
tionships must also be dependent on how the experiment is conducted and who is observing it. 
Clearly, D*21 and f* thus lose the status of material properties since they depend on the velocity 
of the observer and are affected by velocity fields induced by external influences or by volume 
changes on mixing. 

In a general sense, then, eqs. (23) and (24), and hence eq. (26), do not provide a valid basis for 
interpreting diffusive and frictional behavior. From a limited viewpoint, however, eq. (26) can 
be appropriately modified to yield a useful result. We suppose that the partial specific volumes 
are constant, so that there is no volume change on mixing, and that all velocities in a one-dimen- 
sional diffusion process are measured with respect to a frame which moves with the volume aver- 
age velocity. For this particular set of circumstances, it follows that 

and, in addition, eq. (26) is equivalent to eq. (22). The formulation of Yamakawa and Tanford 
can thus be useful in this special case, but i t  should not be applied to more general diffusion pro- 
cesses. This case is commonly encountered in liquid systems because volume change on mixing 
effects are often small and because the velocity of the diffusion cell and the volume average ve- 
locity are often identical. However, caution must be exercised because small volume changes on 
mixing can produce velocities which have a substantial effect on the diffusion process.16 

We conclude by deriving a series form of eq. (22) which describes diffusional and frictional be- 
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havior in dilute polymer solutions. For small concentrations of polymer, we can utilize the series 
expressions 

V p  = V z o [ l +  alp2 + . . .I 
Vl = Vlo[l + blpz + . . .] 

f i z  = (fiz)o[l + kspz + . . .I 

(30) 

(31) 

(32) 

where the coefficients of p z  are functions of T , p  and the nature of the polymer and solvent. Sub- 
stitution of these equations and the well-known result 

into eq. (22) gives the following equations for the concentration dependence of D: 

D = &(l + kDpz + . . .) 
ko = 2AzM2 - ks - bi - 2Vzo 

(34) 

(35) 

k T  
Do = -. 

(f1z)o 

Hence, the concentration dependence of D is given in terms of quantities [(f&, A P ,  ks] which 
can be deduced from the statistical mechanics of dilute solutions and quantities (Vp0,bl) which 
can be easily determined experimentally or can be adequately approximated. Note that ks re- 
fers to the concentration dependence of a friction coefficient which is based on the relative veloc- 
ities of the components. Equation (35) is a modification and generalization of previous results. 
Not only are unambiguous material properties (D and f l z )  used, but the expression allows for 
volume change on mixing effects. Previous investigators have either ignored6J7 the contribu- 
tions of and bl to k D  or have included VPO incorrectly due to the formulation of improper 
constitutive  equation^.'^ The effect of Vzo and bl on kD will be important when kD is less than 
20 ml/g, as will be the case a t  low molecular weights for theta solutions' and usually in a low to 
intermediate molecular weight range for nontheta polymer-solvent mixtures? 

In the above development, we have considered two separate but related problems: examina- 
tions of various relationships between diffusion and friction coefficients and the derivation of a 
more general relationship for the quantity ko which describes the concentration dependence of 
D. We conclude by citing instances where the effects described above must be considered in the 
analysis of diffusional phenomena in polymeric systems. First of all, since D I Z  and D I Z  (or DZI 
and 8 2 1 )  are significantly different when solutions which are not dilute in one of the components 
are considered, care must be exercised in analyzing diffusional behavior for such solutions. 
Since eq. (18) is almost always used to analyze diffusion experiments in liquid systems, it must 
be remembered that it is D, not D12 or Dzl, which is being determined from the experiment, and 
an additional calculation is needed to obtain D12 or D z l  Also, when diffusion data taken in the 
middle part of the concentration range are compared, i t  is necessary to be certain that equivalent 
diffusion coefficients are being compared. 

Secondly, eq. (23) must, of course, never be used to analyze diffusion in flowing polymer solu- 
tions since the velocity field in such a system certainly cannot be attributed solely to the effects 
of concentration gradients. If, in such situations, eq. (23) is interpreted as giving the diffusion 
flux relative to  an appropriate convective velocity, it should be noted that this velocity must, in 
general, be taken as the volume average velocity. Furthermore, in the experimental determina- 
tion of diffusion coefficients, sizeable errors can result if eq. (23) is used as the basis of the data 
analysis even if velocity fields are not induced by external influences. Such errors are caused by 
the velocity field induced by the volume change on mixing, and these errors can be quite large 
even though the volume change on mixing itself is quite small. For example, i t  has been shownI6 
that utilization of eq. (23) in the analysis of free diffusion experiments leads to over 50% error in 
the determination of D even though the volume change on mixing was less than 4%. Free diffu- 
sion experiments are frequently used'7 to determine diffusion coefficients in dilute and concen- 
trated polymer solutions. 

Finally, i t  should be noted that significant errors in kD can result if the modified expression 
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derived above is not utilized. Even when volume change on mixing effects are small so that bl  
can be set equal to zero, the term -2V20 is of the order of 2 ml/g and hence will constitute a t  least 
a 10% contribution to ko whenever the absolute value of ko is less than 20 ml/g. The data of 
King et  al.' show that the absolute value of kD is less than 20 ml/g for molecular weights less 
than 200,000 for a theta solution (the cyclohexane-polystyrene system). Furthermore, from the 
data of King et a1.,2 it is evident that, for diffusion in a mixture of polymer and a mediocre sol- 
vent (the methyl ethyl ketone-polystyrene system), the absolute value of ko is 20 ml/g or less in 
the molecular weight interval of approximately 50,ooO-500,000. The error in the prediction of 
k D  in this wide molecular weight range will be significantly higher than the minimum value of 
lPh, since kD changes sign in this molecular weight interval. Hence, appreciable errors can re- 
sult in the prediction of the change of D with concentration if the -2Vpo term is ignored in the 
calculation of kD. It is thus fair to conclude that there exist a number of instances where the ef- 
fects described in this paper can be quite significant in the analysis of diffusional behavior in 
polymeric systems. 

This work was supported by the National Science Foundation Grant ENG74-23095. 
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Nomenclature 

coefficient in series for Vp 
second virial coefficient 
coefficient in series for O1 
concentration of species I in units of molecules per unit volume 
binary mutual diffusion coefficient 
value of D in the limit of zero polymer concentration 
diffusion coefficient defined by eq. (7) 
diffusion coefficient defined by eq. (11) 
diffusion coefficient defined by eq. (23) 
friction coefficient defined by eq. (20) 
value of f l p  in the limit of zero polymer concentration 
friction coefficient defined by eq. (24) 
mass diffusion flux of component A relative to the velocity of component B 
Boltzmann's constant 
coefficient in series for D 
coefficient in series for 112 

molecular weight of component A 
Avogadro's number 
pressure 
gas constant per mole 
time 
temperature 
velocity of component A with respect to a convenient reference frame 
volume average velocity with respect to a convenient reference frame 
partial specific volume of component A 
value of VA in the limit of zero polymer concentration 
molar volume of solvent 
distance variable in the direction of diffusion 
friction coefficient defined by eq. (1) 
chemical potential of component I per mole 
chemical potential of pure solvent per mole 
chemical potential of component I per molecule 
mass density of mixture 
mass density of component I 
mass fraction of component I 

Indices 
1 refers to solvent 
2 refers to polymer 
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